Equivalence class universal cycles for permutations

نویسندگان

  • Glenn H. Hurlbert
  • Garth Isaak
چکیده

We construct a universal cycle of n-permutations using n + 1 symbols and an equivalence relation based on differences. Moreover a complete family of universal cycles of this kind is constructed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Universal cycles for permutation classes

We define a universal cycle for a class of n-permutations as a cyclic word in which each element of the class occurs exactly once as an n-factor. We give a general result for cyclically closed classes, and then survey the situation when the class is defined as the avoidance class of a set of permutations of length 3, or of a set of permutations of mixed lengths 3 and 4. Résumé. Nous définissons...

متن کامل

Explicit Constructions of Universal Cycles on Partial Permutations

A k-partial permutation out of n elements is a k-tuple (p1, p2, . . . , pk) with k distinct elements and pi ∈ [n] = {1, 2, . . . , n}, i = 1, 2, . . . , k. Let (p1, p2 . . . , pn) be a full permutation of size n, where the elements are distinct and pi ∈ [n], i = 1, 2, . . . , n. Then we say the k-partial permutation (p1, p2, . . . , pk) is induced from the full permutation. A universal cycle on...

متن کامل

Overlap Cycles for Permutations: Necessary and Sufficient Conditions

Universal cycles are generalizations of de Bruijn cycles and Gray codes that were introduced originally by Chung, Diaconis, and Graham in 1992. They have been developed by many authors since, for various combinatorial objects such as strings, subsets, and designs. Certain classes of objects do not admit universal cycles without either a modification of either the object representation or a gene...

متن کامل

Universal structures Fan Chung cycles for combinatorial

Chung, F., P. Diaconis and R. Graham, Universal cycles for combinatorial structures, Discrete Mathematics 110 (1992) 43-59 In this paper, we explore generalizations of de Bruijn cycles for a variety of families of combinatorial structures, including permutations, partitions and subsets of a finite set.

متن کامل

Universal cycles of classes of restricted words

It is well known that Universal Cycles (U-Cycles) of k-letter words on an n-letter alphabet exist for all k and n. In this paper, we prove that Universal Cycles exist for several restricted classes of words, including non-bijections, “equitable” words (under suitable restrictions), ranked permutations, and “passwords”. In each case, proving connectedness of the underlying DeBruijn digraph is th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Mathematics

دوره 149  شماره 

صفحات  -

تاریخ انتشار 1996